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Resonance clustering in globally coupled electrochemical oscillators with external forcing
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Experiments are carried out with a globally coupled, externally forced population of limit-cycle electro-
chemical oscillators with an approximately unimodal distribution of heterogeneities. Global coupling induces
mutually entrained (at frequency w) states; periodic forcing produces forced-entrained (wy) states. As a result

of the interaction of mutual and forced entrainment, resonant cluster states occur with equal spacing of
frequencies that have discretized frequencies following a resonance rule w,=nw;—(n—1)wz. Resonance clus-
tering requires an optimal, intermediate global coupling strength; at weak coupling the clusters have smaller
sizes and do not strictly follow the resonance rule, while at strong coupling the population behaves similar to

a single, giant oscillator.
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I. INTRODUCTION

Rhythms, often generated as synchronization of oscillator
populations [1], can also be exposed to external global forc-
ing or feedback. The resulting dynamical behavior depends
on the types of oscillators (smooth, relaxation, chaotic), to-
pology of interactions (local, global, or network), and on the
magnitude of forcing frequencies relative to the inherent fre-
quencies of the oscillators. A plethora of interesting behavior
has been observed with forcing in reaction-diffusion systems
or locally coupled, identical oscillators: some examples in-
clude labyrinthine standing waves [2], standing wave pat-
terns [3], resonant phase patterns [4], Bloch-front turbulence
[5], localized clusters [6], spirals with hypocycloidal trajec-
tories [7], wave traps and twisted spirals [8], and pacemaker
entrainments [9].

Less attention has, however, been paid to the analysis of
heterogeneous populations of oscillators with a distribution
of natural frequencies. A simple example is a globally
coupled population with global forcing. Following Kuramo-
to’s heuristic argument [10], it is expected that global cou-
pling would produce a mutually entrained state; this state
behaves as a giant oscillator and becomes entrained to the
frequency of an external forcing signal. However, the fre-
quency adjustment process of the mutually entrained state is
not trivial: Sakaguchi [11] studied the effects of the external
fields on mutual entrainment by analysis of a phase model
with unimodal heterogeneities. The simulation results show
that a transition from the mutual entrainment to the forced
entrainment occurs as forcing strength is enhanced; in be-
tween, two and more plateaus are seen in the frequency-vs-
natural-frequency plots which indicate the formation of mul-
tiple, resonance clusters. Because of the interaction of the
mutually entrained cluster (with frequency of w,) and the
forced cluster (wp), new resonant clusters with frequency of
w,=nw;—(n-1)w; are formed at weak forcing strengths.
Note that these discretized frequencies are equally spaced
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with Aw=w; - w;. It was also shown that the order parameter
exhibits large amplitude oscillations when two major clusters
are formed [11,12].

In this paper we investigate experimentally resonance
clustering in a chemical system (the oscillatory electrodisso-
lution of a nickel electrode array in sulfuric acid solution)
with global coupling and forcing with limit cycle oscillators.
The mutual and forced entrainment states are identified, and
their interactions are analyzed. Features of resonance cluster-
ing are compared as coupling strength and forcing amplitude
and frequency are varied. Numerical studies are carried out
to confirm the experimental finding of resonance clustering
in ordinary differential equation models and to investigate
the features of the dynamics in a large parameter space.

II. EXPERIMENTS
A. Experimental setup

The experiments were carried out in a standard three elec-
trode electrochemical cell containing 3 mol/dm® sulfuric
acid at 11 °C with Ni working, a Hg/Hg,S0,/K,SO, refer-
ence, and a Pt counter electrodes [13,14]. The currents [i;(7)]
of Ni electrodes (64 1-mm diameter electrodes in an 8 X 8
geometry with 2 mm spacing) were measured at 100 Hz. The
potential of each electrode was held at potential V' versus
Hg/Hg,SO,/concentrated K,SO, reference electrode. The
external forcing is added to the applied potential V(r)=V,
+b sin27fpt). Vy=1.09 V. The electrodes were connected
to the potentiostat through one series (collective) resistor Ry
and through 64 parallel resistors [13,14]. The interaction
strength K was controlled through the external resistors K
=(R,/Riop)/ (1-R,/R,) where R;=10.1 ) was the total re-
sistance.

The phases and frequencies of the oscillators were deter-
mined with the Hilbert transform method [15] from time
series data of current i;(r) [13]. An order parameter, defined
as the normalized vector sum of the phase points [P.(¢)] in
H[i (1) =i)] vs [ii(r)—(i)] space, is used to characterize the
extent of the synchrony of the population

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.046204

KISS, ZHAI, AND HUDSON

PHYSICAL REVIEW E 77, 046204 (2008)

FIG. 1. Experiments: Dimen-
sionless frequency histograms (w
=f/{f)—1) at different coupling
strengths for a unimodal popula-
tion. The mean natural frequency
(f)=0.47 Hz, standard deviation
0=8.5 mHz. (a) K=0, (b) K
=0.026, (c) K=0.031, (d) K
=0.042.
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where H is the Hilbert transform. This order parameter
[13,16,17] is similar to the Kuramoto order parameter [10].
The magnitude of r=|Z|, the order, has a maximum value of
1 for full synchronization and zero for complete desynchro-
nization (for a population of infinite size).

B. Results

The population in this study has a nearly unimodal natural
frequency distribution (without coupling and forcing) with a
standard deviation of 8.5 mHz; the frequency histogram is
shown in Fig. 1(a). Figures 1(b)-1(d) also show the fre-
quency histograms at K=0.026, 0.031, and 0.042, respec-
tively. At K=0.026 [Fig. 1(b)], a dominant, mutually en-
trained cluster emerged at approximately the mean natural
frequency. Elements with high and low natural frequencies
were not entrained yet. With a stronger coupling of K
=0.031 [Fig. 1(c)], the cluster grew in size considerably and
only a few elements were left out. At K=0.042 [Fig. 1(d)],
62 out of the 64 elements had been in the same cluster with
two elements of lower natural frequencies desynchronized.
External periodic forcing was applied to all these three par-
tially synchronized states.

First consider the forcing of the most synchronized state
at K=0.042. Without forcing a mutually entrained cluster of
62 elements formed at w;=0.450 Hz. The periodic forcing
was applied at a higher frequency of wp=fr=0.47 Hz. With
forcing amplitude of »=3.3 mV some elements of the origi-
nal (mutually entrained) cluster moved out and formed a new
cluster at the forcing frequency (forced entrainment). In Fig.
2(a) (frequency histogram, top panel) there were two large
peaks corresponding to the two clusters. The plot of
frequencies-vs-natural-frequencies  (middle panel) also

0.05

clearly shows two plateaus; the one of the forced entrainment
was at fr while the other one of the mutual entrainment had
a frequency that is slightly higher than the mean frequency
without forcing. The order oscillated in large amplitudes at
b=3.3 mV (bottom panel). As b increased to 4.0 mV, the
forced entrained cluster grew in size; simultaneously two
mutual entrained clusters emerged [Fig. 2(b)]. The frequency
of the old mutual entrained cluster (w,) further increased to
be closer to wg. A new, small resonant cluster formed at w,
=2w;—wp. With an even stronger forcing of b=4.6 mV,
more resonant clusters formed at frequencies of w,=nw;
—(n—-1)wp, n=2,3,4 [Fig. 2(c)]. However, each of these
clusters had a smaller size compared with the two mutual
entrained clusters at b=4.0 mV [Fig. 2(b)]. With only one
large cluster the order no longer exhibited large amplitude
oscillations. Note that the spacing between any adjacent clus-
ters became smaller as b increased. When the forcing ampli-
tude was further increased to »=5.3 mV, no distinct reso-
nant clusters were observed and only one large, the forced
entrained cluster, appeared with 12 nonentrained elements
scattering in the lower frequency region [Fig. 2(d)]. Finally,
with strong enough forcing amplitude, all the elements
formed one cluster at the forcing frequency (not shown).
During the periodic forcing of a less synchronized state
obtained at K=0.031 [Fig. 1(c)], the occurrence of resonant
clusters requires stronger forcing strengths as shown in Figs.
3(a)-3(d). Forced entrainment occurred with forcing and two
main clusters coexisted at weak forcing strengths [Figs. 3(a)
and 3(b)]. As b increases, the forced entrained cluster grew
larger [Figs. 3(a)-3(d)] and finally became the only dominant
cluster at »>5.3 mV. The third, new resonant cluster with
the frequency of w,=2w;— wy appeared at b=4.0 mV; how-
ever, compared with the case of K=0.042 at the same weak
forcing strength [Fig. 2(f)], the new cluster was much
smaller and can be barely seen [Fig. 3(b)]. The presence of
the third cluster only became obvious at a greater forcing
amplitude of b=4.6 mV [Fig. 3(c)]; in contrast, in the case
of K=0.042 at b=4.6 mV multiple resonant clusters had
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FIG. 2. Experiments: Periodic forcing on a unimodal population with K=0.042. V,=1.09 V. Mean frequency before forcing (f)
=0.4497 Hz, forcing frequency f»=0.47 Hz, fr—(f)>20c. Top row: Frequency histograms at different forcing amplitudes. Middle row:
Frequencies in presence of coupling and forcing versus the corresponding natural frequencies. Upper and lower dashed line are f5 and (f),
respectively. Bottom row: Time series of order r. (a) b=3.3 mV, (b) b=4.0 mV, (c) b=4.6 mV, (d) b=5.3 mV.

emerged [Fig. 2(c)]. Because of the small size of the resonant  figures) the mutual entrainment clusters completely disap-
cluster, the existence of two main clusters at b=4.6 mV the peared by giving some of their elements to the forced en-
order oscillated in large amplitudes (not shown). At b trainment cluster while leaving the others nonentrained.

=5.3 mV, the forcing was strong enough to induce multiple The forcing experiments were carried out for an even less
resonant clusters with closer equal frequency spacing [Fig. synchronized population of oscillators obtained with K
3(d)] and with smaller sizes. Again, before the system  =0.026 [Fig. 1(b)]. With a small forcing strength of b
reached a fully forced entrainment state (not shown in the  =3.3 mV [Fig. 3(e)], a high peak arose at the forcing fre-
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FIG. 3. Periodic forcing on a unimodal population with weak coupling strengths. Frequencies in presence of coupling and forcing versus
the corresponding natural frequencies. Top row: K=0.031, (f)=0.466 Hz, fr=0.486 Hz. (a) b=3.3 mV, (b) b=4.0 mV, (c) b=4.6 mV, (d)
b=5.3 mV. Bottom row: K=0.026, (f)=0.4571 Hz, fz=0.48 Hz. (¢) b=3.3 mV, (f) b=4.95 mV, (g) b=5.3 mV, (h) b=5.95 mV. Upper
and lower dashed line are f5 and (f), respectively.
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quency in the frequency histogram; however, the mutual en-
trained cluster had broken up because of the weak coupling.
In the frequency-vs-natural-frequency plot below the forced
entrained plateau, the frequencies of the nonentrained ele-
ments formed an almost continuous 45° line in the lower
frequency region with a small shoulder around 0.4571 Hz
(which is close to the mean natural frequency of the oscilla-
tors). The order exhibited fairly large oscillations but these
oscillations were not regular (not shown). As b was increased
to a quite strong value of 4.95 mV, the elements with lower
frequencies started to form multiple small groups as shown
in Fig. 3(f). However, these “clusters” were small and close
to each other on the 45° line in the frequency-vs-natural-
frequency plot [Fig. 3(f)]. Small clusters were also observed
at stronger forcing strengths b=5.3 mV [Fig. 3(g)] and b
=5.95 mV [Fig. 3(h)]. Since there was no second large clus-
ter other than the forced entrained one, the order oscillations
were irregular with relatively small amplitudes (not shown).
Finally, a completely forced entrained cluster was formed
with strong enough forcing amplitudes.

III. NUMERICAL SIMULATIONS
A. Model equations

We used a model of anodic electrodissolution of a single
nickel electrode proposed by Haim er al. [18]. The model in
a dimensionless form involves two variables: the dimension-
less double layer potential drop (e) and the surface coverage
of NiO+NiOH(#6). One oscillator is described by the follow-
ing two equations:

d_e_V—e
dt~ R

- iF(eae)’ (2)

de exp(0.5¢)

BC,, exp(2e)
dr 1+ Cyexple)

cCy+exple) ®)

where V is the dimensionless applied potential, R is the di-
mensionless series resistance, I' is the surface capacity, and
ir is the Faradaic current

i (0.0) = ( C,, exp(0.5¢)
Re= 1 + C, exp(e)

The parameter values C,=1600, a=0.3, B=6X 1072, ¢=1
X 1073 were optimized [18] to obtain dynamical features
similar to experiments.

In the experiments the oscillators are inherently different
because of electrode heterogeneities [19] and because of ad-
dition of different individual external resistors. We model the
nonidentical nature of the oscillators by giving the oscillators
different values for the parameters R and I' in Egs. (2) and
(3). (Other choices are also possible, however, these param-
eters best approximate the experiments [16,17].) For element
k the resistance and the surface capacitance are obtained us-
ing the relationships R;,=(1+Ap)R, and I'y=(1+A,T,,
where A, is a heterogeneity parameter and R, and I are the
mean values. We used a fixed value of I'y=0.01 and Ry=20
throughout this study. We choose a Lorentzian distribution

+a exp(e))(l -0). (4)
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for A;. (For comparison, simulations with global coupling
were also made with a Gaussian distribution [17].) The
Lorentzian distribution p(x)=y/{m(x—x,)*>+y*]} is charac-
terized by a parameter 7; 2+ is the half-width of the distri-
bution. For a typical value of y=0.5, the equation parameters
Ry and Ty vary within a range of 5% of their means.
Electrical global coupling of strength K is considered; the
model for the coupled set of N oscillators is then [16,17]

de, V—-e¢ . 1
d—tk = Rk k - lF,k( ak’ ek) + R_OK[emean(t) - ek]’ (5)
do 0.5 BC 2
e exp(0.5¢;) _BGy exp(2¢;) 6, (6)

Kdt T 1+C,expley) ok cC, +expley)

where R, is the mean resistance. Global coupling occurs be-
cause of the presence of mean potential [en.n(7)
=1/NZY_ e, ()] in Eq. (5). K=0 represents uncoupled oscil-
lators; K— o yields maximum global coupling that synchro-
nizes the oscillators. Global forcing is added through the
circuit potential

V() = Vi + b sin (2if ), 7)

where V(=15 is a set potential, b and fr=0.0745 are the
forcing amplitude and frequency, respectively. A variable
step size fourth order Runge-Kutta method of MATLAB was
used to integrate Egs. (5) and (6) with a display step size of
Ar=0.5, absolute error=107%, relative error=1073. Smaller
step sizes and error limits gave the same results. A transient
of t=10000 was discarded from each time series. The phases
and frequencies of simulated oscillators are determined from
time series data of e,(r) with the Hilbert transform method

[15].

B. Results

Without global coupling and forcing the oscillators ex-
hibit frequencies determined by the introduced heterogene-
ities, as shown in Fig. 4(a). Since the heterogeneities are
small, the frequencies of the oscillators follow almost lin-
early the heterogeneities and thus the frequency distribution
is similar to a Lorentzian distribution. With global coupling
only, a mutually entrained state occurs [see Fig. 4(b)] above
a critical coupling strength K. [10,13,16,17,20]; in this mu-
tually entrained state a large fraction of the oscillators are
synchronized. When the coupling strength is increased above
K., the number of mutually entrained oscillators increases
until all the 64 oscillators are fully synchronized. With global
forcing only [see Fig. 4(c)] as the forcing amplitude in-
creases more and more oscillators lock to the forced entrain-
ment state. Note however, that there is no phase transition,
and the increase in the number of entrained oscillators with
forcing amplitude is determined by the frequency distribu-
tion; the large increase at around b=0.6 is due to the large
number of oscillators of similar frequencies [peak in Fig.
4(a)].

With both global coupling and forcing, in a large fraction
of the parameter space (K,b), each oscillator can be classi-
fied as belonging to one of the three major groups: desyn-
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FIG. 4. (Color online) Numerical simulations: Mutual and
forced entrainment in a model of 64 globally coupled oscillators
with external forcing. (a) Natural (inherent) frequency distribution.
(b) Mutual entrainment with global coupling only. Number of mu-
tually entrained oscillators vs coupling strength K. (c) Forced en-
trainment with external forcing only. Number of oscillators locked
to external forcing signal vs forcing amplitude b. (d) Phase diagram
showing forced and mutually entrained regions in the coupling
strength—forcing amplitude parameter space. F, forced entrain-
ment. M, mutual entrainment. D, desynchronized state. fr=0.0745.

chronized (D), mutually entrained (M), and forced entrained
(F) states. Figure 4(d) shows the regions in the (K,b) param-
eter space in which these states can occur. At low forcing and
coupling the system is desynchronized (D). Starting from
this desynchronized state with increasing coupling there is a
transition to the occurrence of the mutually entrained state
[M +D in Fig. 4(b)]. With increasing the forcing amplitude in
a weakly coupled population, a forced entrainment state
starts to occur (F+D). At very strong coupling, the transition
is similar to the forcing of a single oscillator: the frequency
of the mutually entrained cluster (M) shifts to that of the
forcing (F).

We investigated the dynamics in the middle region of the
phase diagram further, where both forced and mutually en-
trained states can coexist. (Note that this is not hysteresis. In
a synchronized state some of the oscillators are mutually,
some are forced entrained; there are some oscillators that are
also entrained but, as we shall see below, their frequencies
are combination of those of the mutually and forced entrain-
ment states.) The frequencies and the order of such a state
with weak forcing is shown in Fig. 5(a). Since the forcing is
weak, the large peak in the frequency histogram is associated
with the mutually entrained state, while the smaller peak at
the forcing frequency with the forced entrainment. The fre-
quency vs inherent frequency graph (middle) shows that the
elements with lower frequencies form the mutually entrained
state; such an asymmetry in the entrainment was also ob-
served with pure coupling as well [16]. Elements with fre-
quencies between the mutually and forced entrainment
groups have strongly scattered, lower frequencies; those os-
cillators with larger frequencies are not entrained. Because
the majority of the population is mutually entrained, a large
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FIG. 5. Numerical simulations: frequency distributions and or-
der parameters at K=0.67. Top row: frequency distribution of os-
cillators. Middle row: frequency of oscillators vs inherent frequency
(dashed line denotes the forcedly entrained cluster). Bottom row:
order parameter vs time. (a) Mutual entrainment dominated state
with weak forcing, »=0.428. (b) Resonance clustering at interme-
diate forcing strength, »=0.443. (c) Entrainment to strong forcing,
b=0.452.

value of order parameter (bottom panel) is observed with
small modulation due to forced entrainment state.

At a somewhat stronger forcing amplitude, a restructuring
of the frequencies of the oscillators occurs [see Fig. 5(b)].
Now the major group is associated with the forced entrain-
ment, however, the mutually entrained state is difficult to
determine since the population becomes clustered at frequen-
cies with a (dimensionless) spacing of approximately 0.0009
[f=0.0736, 0.0745 (forcing), 0.0754, 0.0764]; 8 elements
of the population of 64 oscillators do not belong to these
resonant clusters. Resonant clusters seem to appear as an
interaction between the mutual and forced entrainments and
produce a strongly oscillating order parameter.

As the forcing amplitude is further increased, the forced
entrainment [Fig. 5(b)] state dominates in which the ele-
ments around the forcing frequencies along with those of the
lower frequencies are entrained and the elements with higher
frequencies are not synchronized. The order parameter again
has a large, close to 1 value, but with small fluctuations due
to the desynchronized elements.

Resonance clustering to a lesser extent also appears at
weaker coupling strength as it is shown at three forcing am-
plitudes in Fig. 6. At these conditions [Figs. 6(a) and 6(b)],
the elements do form various frequency clusters, however,
there may be quite a few clusters with smaller number of
elements and the spacing between the clusters is small. These
states also exhibit oscillating order (not shown in the fig-
ures). At a state very close the destruction of mutual entrain-
ment [Fig. 6(c)] the frequencies of mutual and forced en-
trainment states are very close and frequency clustering
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FIG. 6. Numerical simulations: frequencies of oscillators (with
coupling and forcing) vs inherent frequencies at weaker interactions
K=0.54. (a) Weak forcing, »=0.385. (b) Intermediate forcing
strength, b=0.398. (c) Strong forcing, b=0.410.

appears as discretized frequencies of groups of 1-3 oscilla-
tors only.

Figure 7 shows the simulation results with a population of
512 oscillators at inherent frequency distribution, coupling
strength, and forcing amplitude similar to those investigated
with 64 oscillators. We observed five frequency clusters with
approximate spacing of 0.001 (at frequencies f
=[0.0734,0.0745(forcing),0.0756,0.0766,0.0777]).  This
five-cluster state with N=512 is reminiscent of the four-
cluster state with N=64 [Fig. 5(b)], however, one additional
cluster could be resolved at f=0.0777. Thus, the fine struc-
ture of resonance clusters can be better seen with larger
populations.

IV. DISCUSSION

Clustering is a behavior of a population of oscillators
through which dynamically differentiated elements form.
The classification of clusters [21] is based on whether it af-
fects mainly the phases (phase clusters) [22,23] or the am-
plitudes (amplitude clusters) [24] of the periodic oscillators.
Chaotic systems are particularly inclined for producing clus-
ters at coupling strengths weaker than those required for
identical synchronization [25-27]. In this study, we observed
frequency clusters in a forced, weakly coupled population of
limit-cycle electrochemical oscillators with unimodal hetero-
geneities. In addition to the trivial mutually and entrained
clusters, groups of elements are obtained at other, discrete
frequency values. We also showed that at coupling strengths
and forcing amplitudes with well-defined resonance clusters

a b
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= o 74 N .t
40 2 e %
20 | 2 .
0 Ll land 70 .
72 74 76 78 70 5, 72 74
10% f 10 fj (b=0)

FIG. 7. Numerical simulations: population of 512 oscillators
exhibiting resonance clustering at K=0.67 and »=0.47. (a) Fre-
quency distribution of oscillators. (For f=0.075 there is a large peak
with N=325, therefore, a zoom is shown.) (b) Frequency of oscil-
lators vs inherent frequency (dashed line denotes the forcing
frequency).
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the frequencies are equally spaced and follow the relation-
ship found by Sakaguchi [11]: w,=nw;—(n-1)wg. (Such
spectrum was analyzed by linear stability of the forced en-
trainment state [28].) With weaker coupling strengths a large
number of clusters with small number of elements were ob-
served whose frequency was not greatly modified from the
natural frequencies. We note that frequency discretization
through a different mechanism, viz., through large delays in
the coupling term, was also observed in a pair of lasers [29]
and in a pair chaotic Rossler oscillators [30].

Along with the occurrence of frequency clusters, a
strongly oscillating order parameter was observed; the order
decreased to very low values and thus intermittent loss of the
overall rhythm could be observed. The loss of the overall
rhythm may have implications in the dynamics of biological
systems where the rhythm could be either essential or patho-
logical [1].

A biological example in which coupling and forcing play
a role is the circadian master clock in the brain [31]; the
suprachiasmatic nuclei consist of heterogeneous, circadian
oscillators that are entrained by cell interactions, and by ex-
ternal light. The SCN is strongly heterogeneous and the in-
teraction of the core, being entrained by light, and the shell
(composed of mostly self-oscillating neurons) is a complex
issue [32,33]; resonance clustering could play a role in the
dynamical behavior of the different regions. Resonant inter-
actions between oscillators have been considered as well in
the context of information processing with oscillatory units
[34,35]; the cortex is considered as a weakly coupled oscil-
lator population forced by the thalamic input.

As far as the importance of resonance clustering in bio-
logical networks of rhythmic elements is concerned, we shall
consider that we investigated a global coupling topology. Al-
though such global, all-to-all coupling is not very likely in
biological systems, sometimes a network of oscillators can
be approximated by global coupling. A fundamental commu-
nication mechanism of bacteria, quorum sensing, is often
modeled by global interactions; such a mechanism was
shown to be able to produce synchrony [36]. Synchroniza-
tion of circadian cells was modeled by a global interaction
mechanism based on an argument that the spatial transmis-
sion of neurotransmitters released by each cell is fast com-
pared to the time scale of oscillations [37]. Neural networks
with electrically spiking neurons are also often can be con-
sidered as a population of weakly, coupled globally coupled
oscillators [38]. Even when network coupling occurs, the
depth of the network is often not very large when external
forcing is effective [39] thus global coupling approximation
and resonance clustering can play a role in generation of
collective dynamics with coupling and forcing.

Some features of the cluster interactions such as genera-
tion of the resonant clusters could also be observed in a
population with bimodal heterogeneities; the forced system
can be regarded as a simplified case of bimodal system
where one special mode has standard deviation of zero and
its strength can be directly controlled. Frequency clustering
and generation of complex collective signal were found with
the global coupling of periodic electrochemical oscillator
populations with bimodal natural frequency distributions
[40]; merging and splitting of clusters occurred on the way to
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the final synchronized state with increasing the coupling
strength. Such bimodal (and multimodal) populations may
occur in biological systems that are composed of broadly
heterogeneous cell groups. Although we investigated reso-
nance clustering here with electrochemical oscillators, simi-
lar dynamical differentiation mechanisms are expected to oc-
cur in a variety of rhythmic multicellular systems under the
cooperative effects of coupling and forcing; the synchronized

PHYSICAL REVIEW E 77, 046204 (2008)

groups of elements would contribute to the formation of mul-
tistructured hierarchical organizations often seen in complex
systems [41,42].
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